

GridGenius: Hybrid machine learning and

transformer-based explainable energy demand

forecasting for Bangladesh

Adib Ar Rahman Khan
Department of Electrical and Computer

Engineering
North South University, Bangladesh

Dhaka, Bangladesh
adib.khan01@northsouth.edu

Sadia Islam Mou
Department of Electrical and Computer

Engineering
North South University, Bangladesh

Dhaka, Bangladesh
sadia.mou21@northsouth.edu

Md Aurongojeb Lishad
Department of Electrical and Computer

Engineering
North South University, Bangladesh

Dhaka, Bangladesh
aurongojeb.lishad@northsouth.edu

Intisar Tahmid Naheen
Department of Electrical and Computer

Engineering
North South University, Bangladesh

Dhaka, Bangladesh
intisar.naheen@northsouth.edu

Pranoy Saha
Department of Electrical and Computer

Engineering
North South University, Bangladesh

Dhaka, Bangladesh
pranoy.saha@northsouth.edu

Abstract—Bangladesh continues to face critical challenges in

balancing electricity generation with national demand, resulting

in resource wastage, elevated operational costs, and frequent

load shedding. Existing forecasting methods often lack the

precision, scalability, and interpretability required for dynamic,

real-world grid optimization. In this work, we present

GridGenius, a fully deployed, novel AI-powered platform

designed to forecast daily electricity demand with high accuracy

and explainability. The system utilizes a hybrid modeling

architecture that integrates classical machine learning models

(Random Forest, XGBoost) with a custom Transformer-based

deep learning regressor, achieving R² scores of up to 0.89. A

novel dataset was constructed by scraping and processing over

1,800 daily reports from the Bangladesh Power Development

Board (BPDB) covering the period from 2020 to 2024. The

dataset is enriched with engineered features such as holidays,

temperature trends, seasonal effects, and demand-generation

gaps. Multiple preprocessed dataset variants were created to

assess model robustness. To address the widespread issue of

limited model transparency, GridGenius integrates a Retrieval-

Augmented Generation (RAG) pipeline powered by a Large

Language Model (LLM), allowing users to query about forecasts

in natural language and receive real-time, interpretable insights.

The platform is deployed as a live web application with forecast

panels, visual dashboards, and chatbot interaction, making

advanced energy forecasting accessible to grid planners and

policymakers. Our results demonstrate that combining hybrid

AI techniques with explainable interfaces significantly enhances

both predictive performance and user trust. GridGenius offers

a scalable, transparent, and novel solution for smarter grid

management in Bangladesh and similarly developing energy

systems.

Keywords—Energy demand forecasting, Transformer models,

Explainable AI, Machine learning, Retrieval-Augmented

Generation (RAG), Grid optimization

I. INTRODUCTION

Bangladesh has long struggled with challenges in
balancing electricity generation and national demand,
resulting in frequent load shedding, energy wastage, and
significant economic loss. Studies indicate that inefficient
load management and inaccurate demand forecasting
contribute substantially to these issues, leading to an energy

shortfall that affects both residential and industrial sectors.
Despite improvements in power generation capacity, the
Bangladesh Power Development Board (BPDB) [1] continues
to experience demand-supply mismatches, particularly during
peak periods and seasonal transitions. The problem is
exacerbated by the lack of real-time, explainable forecasting
systems [3] that planners can use for dynamic grid
optimization.

Conventional energy demand forecasting methods, such as
time-series models and basic machine learning (ML)
techniques, have been deployed with moderate success.
However, they often fail to generalize across different
temporal scales, ignore feature interactions such as holidays
and weather effects, and lack scalability for daily operational
use. This situation motivates the need for an intelligent,
flexible system capable of daily forecasting, system-wide
interpretability, and real-world deployment readiness.

To address this need, we propose leveraging advances in
artificial intelligence (AI), particularly hybrid modeling
techniques that combine classical ML models with
Transformer-based [2] deep learning architectures.
Furthermore, integrating explainable AI [3] methods, such as
Retrieval-Augmented Generation (RAG) [4] pipelines
powered by Large Language Models (LLMs), can provide not
only accurate forecasts but also transparent justifications for
model predictions, making the system more trustworthy for
grid planners and policymakers.

Several recent studies have explored energy demand
forecasting using AI approaches. For instance, the work by
Hossain [5], applied XGBoost models on partial BPDB [1]
datasets, achieving short-term accuracy improvements but
lacking explainability [3]. Wang [6], combined CNN and
LSTM networks for short-term residential load prediction but
did not incorporate feature engineering such as holiday or
seasonal effects. Haque [7], used LightGBM models for
medium-term forecasting at a subdistrict level, focusing
mainly on apartment complexes with limited data diversity.
Haque [8], also investigated long-term forecasting using KNN
models, achieving high R² scores but overfitting to specific
city-level data without daily granularity. Additionally, a
survey on Transformer models [2] for time series forecasting

[9] highlighted the potential of self-attention mechanisms but
noted the scarcity of real-world applications tailored to energy
systems.

Despite their contributions, significant research gaps
remain:

 Lack of comprehensive, real-world daily datasets
spanning multiple years.

 Limited feature engineering capturing factors like
holidays, seasons, and demand-generation gaps.

 Absence of hybrid model architectures combining
ML and Transformer-based [2] deep learning.

 No integration of explainable AI [3] methods (e.g.,
RAG pipelines) [4] into operational forecasting
systems.

 Lack of real-world deployment with live user
interaction capabilities.

 To bridge these gaps, we present GridGenius, a novel,
fully deployed, AI-powered energy demand forecasting
platform. GridGenius combines traditional ML models
(Random Forest, XGBoost) with a customized Transformer-
based [2] regressor, trained on a novel daily dataset collected
from 1800+ BPDB [1] reports. The platform integrates a
RAG-based [4] explainable AI [3] chatbot, enabling real-time,
natural language interaction with forecasts. Through this
system, we aim to contribute a scalable, explainable, and
operationally practical solution for grid management in
Bangladesh and similar emerging economies.

II. RELATED WORK

A. Energy Demand Forecasting and Dataset Challenges

Energy demand forecasting has traditionally relied on
statistical methods such as ARIMA and multiple linear
regression, offering reasonable short-term accuracy but
struggling to generalize across seasons and large temporal
variations. Recent studies have turned toward machine
learning (ML) techniques, utilizing historical consumption
data to model complex nonlinear patterns. Hossain [5] applied
XGBoost to partial BPDB [1] data but lacked broader feature
engineering, limiting model robustness. Haque [7] used
LightGBM models on apartment-level data for medium-term
forecasting; however, the dataset was small and
geographically narrow. Wang [6] explored CNN-LSTM
hybrids for short-term load prediction, focusing primarily on
deep model structures without external factor integration such
as holidays or seasonal shifts. Haque [8] utilized KNN for
long-term forecasting but with reduced temporal granularity.
These approaches demonstrate the shift toward data-driven
modeling but also expose limitations in dataset diversity and
feature richness.

B. Transformer Models for Time Series Forecasting

The adoption of Transformer-based architectures [2] for

time-series forecasting has recently gained momentum. The

survey by Wen [9] highlights the effectiveness of attention
mechanisms in modeling long-term dependencies,

outperforming RNN-based methods on multiple

benchmarks. Further, studies like Wu [10] proposed

Autoformer, introducing decomposition blocks specifically

tuned for periodicity and trend extraction in time-series data.

Although Transformers [2] offer promising gains, their

application to real-world energy systems remains limited.

Most Transformer-based [2] studies focus on benchmark

datasets (e.g., ETT, Weather, Traffic) rather than operational

electricity demand.

C. Methodologies Combining Explainable AI and
Forecasting

Explainability in energy forecasting has traditionally
relied on post hoc metric evaluation (e.g., R², RMSE) without
offering insights into feature importance or model reasoning.
Recent advances integrate Large Language Models (LLMs)
and Retrieval-Augmented Generation (RAG) [4] pipelines to
enable more transparent, interactive systems. IBM's
watsonx.ai [11], for instance, combines pretrained models
with agent-driven retrieval systems to deliver natural-
language insights on forecast outputs. Despite these
developments, explainable AI techniques have yet to be
widely adopted in operational energy forecasting platforms.

D. Summary of Research Gaps

From the above review, we identify the following major
research gaps:

 Lack of large, real-world, daily-scale datasets
spanning multiple years.

 Limited feature engineering incorporating external
factors like holidays, temperature, and seasonality.

 Minimal use of hybrid ML and Transformer-based
[2] models specifically tuned for operational
electricity demand forecasting.

 Absence of integrated explainable AI [3] interfaces
(e.g., RAG [4] pipelines) within forecasting
platforms.

 Limited deployment of full-stack, user-interactive
systems capable of real-time forecast querying.

To address these gaps, our work presents GridGenius, a
fully deployed forecasting platform combining a custom
dataset, hybrid modeling, and explainable AI [3] integration
for smarter, scalable energy management.

TABLE I. SUMMARY OF RELATED WORK

Paper
Details

Approach Used Dataset Limitations

Hossain

[5]

XGBoost on

BPDB [1]

partial data

Limited features;

short-term data

No feature

engineering; no

explainability

Haque

[7]

LightGBM on

apartment data

4 years, small

regional dataset

Not generalized;

lacks external

factors

Wang [6]
CNN-LSTM

hybrid

Focused on deep

model structure

No feature

engineering;

ignored

seasonality

Haque

[8]

KNN for long-

term planning

3 years, city-

specific data

Lack of daily

granularity;

overfitting

Wen [9]
Transformer [2]

models survey

Benchmark time

series datasets

No application

to real-world

energy systems

Wu [10]
Autoformer for

time-series

Synthetic datasets

only

No real energy

load forecasting

experiments

Fig. 1. Example Overall system architecture of GridGenius showing dataset creation, model training, forecasting, and explainable AI integration.

III. METHODOLOGY

The proposed GridGenius system follows a modular,
multi-stage workflow encompassing data collection,
preprocessing, model training, explainability, and
deployment. In the first stage, raw daily electricity reports and
external weather data are collected and merged. Subsequent
preprocessing steps involve missing value handling, outlier
detection, and extensive feature engineering to construct
multiple dataset variants. Machine learning and Transformer-
based [2] deep learning models are then trained and evaluated
to predict daily electricity demand. Finally, a Retrieval-
Augmented Generation (RAG) [4] chatbot is integrated into
the platform to deliver real-time explainable insights to users.
A visual overview of the complete system architecture is
provided (Fig. 1).

A. Dataset Collection and Description

We constructed a novel dataset by programmatically
scraping over 1800 daily electricity reports published by the
Bangladesh Power Development Board (BPDB) [1] between
2020 and 2024. Each report contains:

 Maximum Demand (MW)

 Maximum Generation (MW)

 Associated Metadata (date, time)

To enrich the feature space, additional external data
sources were integrated:

 Daily average temperature (in °C) based on weather
reports.

 Holiday flag (binary indicator if a day was a national
holiday).

This dataset provided a foundation for understanding the
underlying drivers of energy demand fluctuations in
Bangladesh, along with an understanding of how these
features are interrelated.

B. Exploratory Data Analysis (EDA)

Extensive EDA was conducted to understand trends,
distributions, and feature relationships across the entire
dataset.

Key insights included:

 Temperature Distribution skewed towards high
temperatures (Fig. 2).

 Energy Demand shows broad Distribution, whereas
Generation Distribution skews to the right (Fig. 3,
Fig. 4).

 Correlation among specific features (Fig. 5).

 Demand increases during hotter months (Fig. 6).

 Holidays correlate with reduced demand (Fig. 7).

 Frequent demand-generation gaps were observed,
especially in colder months (Fig. 8, 9).

Fig. 2. Temperature shows a right-skewed distribution, peaking at 30°C.

Fig. 3. Energy Demand shows a broad distribution.

Fig. 4. Energy Generation skews to the right, peaking at 15000 MW.

Fig. 5. Correlation Matrix (Heatmap) of Dataset Features.

Fig. 6. Energy Demand increases during higher temperature seasons.

Fig. 7. Holidays show lesser Energy Demand compared to Non-Holidays.

Fig. 8. Time Series Analysis of the Energy Demand-Generation Gap.

Fig. 9. Monthly Average Energy Demand-Generation Gap (2020-2024).

C. Feature Engineering and Data Iterations

Several preprocessing and feature engineering techniques
were applied:

 Outlier removal using IQR and Z-score methods.

 Scaling with StandardScaler and MinMaxScaler.

 New features, including Demand-Generation Gap
(MW), Season Classification (“High Temp” or “Low
Temp”), and a Holiday binary flag.

 We created four different dataset variants, each differing
by outlier handling and scaling strategies, to allow for robust
model experimentation.

D. Modeling Pipeline

Multiple machine learning models were explored:

 Linear Regression (baseline model)

 Random Forest Regressor (best classical model)

 XGBoost Regressor (second-best)

 Support Vector Regressor (SVR) (sensitive to
feature scaling)

 Transformer Regressor (custom deep learning
model)

Key details about selected 3 models, other than our
primary model of focus:

a) Random Forest Regressor: 80/20 train-test split,

with random_state as 42. RandomizedSearchCV used to tune

n_estimators, max_depth, min_samples_split,

min_samples_leaf. This model achieved the highest R² score

(≈ 89.9%) among tree-based models.

b) XGBoost Regressor: Boosting algorithm correcting

residuals iteratively. Tuned n_estimators, learning_rate,

max_depth, subsample, colsample_bytree, gamma. Fast

histogram-based optimization.

c) Support Vector Regression (SVR): Required feature

standardization. Kernels (linear, polynomial) were explored.

Less effective than ensemble methods for this dataset.

E. Primary Model: Transformer Regressor

The Transformer-based [2] Regressor was developed as
the primary model to capture complex feature interactions:

 Input Layer: Linear mapping to model dimensions

 Transformer Encoder Layers: Multi-head self-
attention layers, Feed-forward sublayers, Dropout
regularization

 Output Layer: Single neuron predicting demand

TABLE II. TRANSFORMER REGRESSOR IMPLEMENTATION DETAILS

Setting Value

Optimizer Adam [12]

Loss Function Mean Squared Error (MSE)

Training Epochs 50

Hyperparameters Tuned
num_heads, model_dim, num_layers,

dropout, learning_rate

The loss reduction was achieved via iterative

backpropagation, weight updates, and learning rate

adjustments through the Adam optimizer [12]. Dropout was

applied to prevent overfitting.

F. Explainability through RAG-based LLM Integration

To enhance system transparency, explainable AI [3] was
incorporated using a Retrieval-Augmented Generation (RAG)
[4] pipeline:

 ChromaDB vector store [13] holds the Project
Documentation, Model Statistics, and Dataset
Summaries.

 For the LLM, Llama 3.1 (8 billion parameters) [14]
is used (running inference via Groq Cloud [15]), and
on user queries, relevant context is retrieved and
passed to the LLM via a custom RAG [4] pipeline.

 This enables the system to explain forecasts, behaviors,
and feature impacts without requiring technical expertise from
the user.

G. Deployment Overview

The GridGenius platform is deployed using a modular and
scalable architecture to ensure high performance, low latency,
and ease of future extensibility. The backend is developed
using FastAPI [16], a modern, asynchronous Python web
framework known for its speed and automatic OpenAPI
documentation generation. The backend serves two primary
purposes: exposing RESTful API endpoints for model
inference and RAG-based [4] explainability queries, and
handling data retrieval from the vector database.

The frontend is built using a responsive web framework
and hosted on Vercel [17], a cloud platform optimized for

static assets and dynamic serverless functions. The frontend
provides an interactive dashboard that allows users to input
query parameters (e.g., temperature, holiday status, zone),
view daily energy demand forecasts, and receive real-time
explanations through an integrated chatbot interface.

A persistent local server hosts the ChromaDB vector
database [13], which stores embedded project documents,
model statistics, and dataset insights. This architecture enables
fast retrieval of relevant context when serving explainable AI
[3] outputs.

The user interface is structured into three primary sections:

 Forecast Panel: Displays the predicted energy
demand values based on user inputs (Fig. 10).

 Visualization Dashboard: Presents historical trends,
model performance metrics, and feature impact
graphs (Fig. 11).

 Chatbot Assistant: Enables natural language
interaction with the system via a Retrieval-
Augmented Generation (RAG) [4] pipeline, powered
by the LLM (Fig. 12).

 Additional embellishment was added with a user-centric
interface, a visually refined landing page, an additional
“About” section displaying information of the team and
experiment, and further details to make the tool approachable
to anyone at all; even people outside the realm of Machine
Learning, AI, or Energy Efficiency Systems. This further
propels our platform in its goal of presenting an approachable
and transparent system for everyone. An interactive version of
this paper is also available on the platform.

Fig. 10. The prediction tool, “GridOracle”, predicting Energy Demand.

Fig. 11. The Visualization Dashboard for Data Analytics

Fig. 12. The chatbot “GridGenius”, engaging in an insightful conversation.

Overall, the deployment strategy ensures a low-latency
experience for end-users while maintaining modularity,
allowing independent updates to the backend, frontend, and
vector database components without system downtime.

IV. RESULTS AND EXPERIMENTS

A. Experimental Setup

All model training and experimentation were conducted
using a hybrid setup consisting of Google Colab (NVIDIA T4
GPU), a personal computer equipped with an NVIDIA RTX
3060 GPU (6 GB VRAM, 16 GB RAM, Intel i7 processor)
and a MacBook Air (M1, 16GB). The project utilized
frameworks and libraries such as Scikit-learn [18],
TensorFlow [19], PyTorch [20], Keras [21], NumPy [22],
Pandas [23], Matplotlib [24], Seaborn [25], FastAPI [16], and
Chroma [13].

DB for model training, deployment, and visualization. The
frontend was hosted on Vercel [17], and retrieval-augmented
explainability features were implemented using Groq Cloud
[15] with embeddings generated via Google API Model 004
[26] and Huggingface MiniLM-L6-v2 [27], with the backend
being hosted on Railway [28].

B. Evaluation Metrics

Model performance was evaluated based on the following
metrics:

 Coefficient of Determination (R²): Measures model
explanatory power.

 Mean Absolute Error (MAE): Indicates average
prediction error magnitude.

 Mean Squared Error (MSE): Penalizes larger errors
quadratically.

 Root Mean Squared Error (RMSE): Represents error
in original unit scale (MW).

These metrics provided a multi-perspective evaluation of
forecasting accuracy and stability.

C. Overall Model Performance

Extensive experimentation was conducted using five
different models across four dataset iterations:

 Linear Regression

 Random Forest Regressor

 Support Vector Regressor (SVR)

 Gradient Boosting Regressor

 XGBoost Regressor

 Transformer [2] Regressor (custom deep learning
model)

The best performing models were Random Forest (Fig.
13) and XGBoost (Fig. 14), achieving R² scores close to 0.90,
while the Transformer [2] achieved an R² of approximately
0.82 (Fig. 15).

TABLE III. EVALUATION ACROSS DATASET VARIANTS

Dataset

Details

Best

Model
R² MAE RMSE

GGDataset_a

(MinMaxScaler +

IQR)

Random

Forest
0.89845 0.04623 0.06487

GGDataset_b

(MinMaxScaler +

Z-Score)

Random

Forest
0.89198 0.04758 0.06691

GGDataset_c

(StandardScaler +

IQR)

Random

Forest
0.89776 0.22607 0.31274

GGDataset_d

(StandardScaler +

Z-Score)

Random

Forest
0.89449 0.22679 0.31770

Fig. 13. Random Forest predictions vs actual Energy Demand.

Fig. 14. XGBoost predictions vs actual Energy Demand.

D. Hyperparameter Tuning

Hyperparameter optimization was performed for the
Random Forest and XGBoost models, using
RandomizedSearchCV.

 Random Forest Tuned Parameters include
n_estimators, max_depth, min_samples_split,
min_samples_leaf.

 XGBoost Tuned Parameters include n_estimators,
learning_rate, max_depth, subsample,
colsample_bytree, gamma.

 Fine-tuning substantially boosted performance,
particularly reducing error variance.

E. Transformer Model Results

The custom-built Transformer-based [2] Regressor was
trained on feature-engineered datasets to capture sequential
and temporal patterns.

Key Training Details:

 Optimizer: Adam [2]

 Loss Function: Mean Square Error (MSE)

 Training Epochs: 50 (Fig. 16)

 Attention Mechanism: Multi-Head Self-Attention

 Positional Encoding: Injected to preserve temporal
ordering

 Performance:

 R² ≈ 0.82

 MAE ≈ 0.06

 RMSE ≈ 0.08

The Transformer [2] model, despite limited sample size
compared to deep learning standards, demonstrated excellent
generalization.

Fig. 15. Transformer Model predictions vs actual Energy Demand.

Fig. 16. Training Loss per epoch for the Transformer Model

F. Ablation Study: Impact of Scaling Techniques

To evaluate the effect of feature scaling strategies, models
were trained and tested on datasets processed via
MinMaxScaler, and StandardScaler (each with outliers
removed using 0-1 or Z-Score Normalization to introduce
further variation and robust testing).

 Observations:

 MinMaxScaler performed marginally better overall.

 Transformer [2] models were less sensitive to scaling
compared to SVR or Random Forest.

 Z-Score Normalization had minimal effect on outlier
removal.

G. Explainable AI (LLM Chatbot) Results

The explainability module utilizing RAG [4] with Groq
Cloud [15] effectively answered complex user queries such as
“What effects demand spike in Summer?”, or “How do
holidays impact generation gaps?”

Real-time explanations were generated with response
times consistently below 1 second, improving transparency.

V. CONCLUSION AND FUTURE WORK

This paper presented GridGenius, an AI-powered
forecasting platform designed to improve daily electricity
demand prediction and planning in Bangladesh. Addressing
limitations in prior research, GridGenius constructs a novel,
multi-year dataset by programmatically scraping over 1800
daily BPDB reports [1], augmented with external signals
including temperature and national holiday indicators.
Through extensive exploratory data analysis and feature
engineering, the system leverages both classical machine
learning models (e.g., Random Forest, XGBoost) and a
custom-built Transformer model [2] to capture temporal and
nonlinear patterns across diverse timeframes.

Among the trained models, the Random Forest Regressor
achieved the highest accuracy (R² ≈ 0.89), while the
Transformer model [2] demonstrated strong generalization
capabilities despite comparatively lower data volume. To
enhance usability and transparency, GridGenius integrates a
Retrieval-Augmented Generation (RAG) [4] pipeline
powered by a Groq-hosted [15] Llama 3.1 LLM [14], enabling
real-time, natural language explanations of predictions. The
entire system is deployed through a scalable web stack
(FastAPI [16], ChromaDB [13], Vercel [17]), offering end
users an intuitive, fully interactive forecasting dashboard
accessible via any modern browser.

By combining data engineering, hybrid modeling,
explainable AI [3], and system deployment, GridGenius
addresses major gaps in scalability, interpretability, and real-
world usability, offering a novel blueprint for intelligent
energy planning in emerging economies.

Several promising directions remain for extending this
work. First, we aim to collaborate directly with the
Bangladesh Power Development Board (BPDB) [1] to gain
access to even older historical reports, potentially expanding
the dataset back to 2015 for improved long-term modeling.
Enhancements to the Transformer [2] architecture are also
planned, including hyperparameter tuning via advanced
search strategies and experimentation with temporal
convolutional or attention-variant modules. Additionally, the
LLM chatbot can be further improved through domain-
specific prompt tuning, retrieval enhancement, or lightweight
fine-tuning via LoRA [29], enabling richer technical dialogues
and planning support. Finally, integrating additional external
signals such as industrial activity indices, fuel prices, or
regional outage data could further improve forecasting
accuracy and policymaker relevance.

Future iterations of GridGenius offer several avenues for
enhancement and expansion. One immediate goal is to
collaborate with the Bangladesh Power Development Board
(BPDB) [1] to access historical records prior to 2020, thereby
expanding the dataset's temporal coverage and enabling long-
term forecasting and trend decomposition.

On the modeling side, we plan to optimize the Transformer
architecture [2] through advanced hyperparameter tuning
(e.g., Bayesian optimization) and explore alternate designs
such as Temporal Convolutional Networks (TCNs) [30],
Informer [31], or Autoformer blocks [10], particularly suited
for long-horizon sequence forecasting. Incorporating
multivariate attention mechanisms [32] may further improve
the model’s ability to capture feature interactions over time.

To improve user interpretability and decision support, we
aim to enhance the LLM module by integrating domain-
specific prompt templates, contextual retrieval filters, and
potentially lightweight LoRA [29] fine-tuning, allowing the
chatbot to provide more specialized insights for utility
planners and government stakeholders.

Furthermore, the forecasting pipeline can be expanded to
include additional external features, such as:

 Industrial activity indicators

 Fuel pricing trends

 Urbanization and demographic data

 Grid maintenance schedules and regional outage
history

Finally, we plan to explore mobile-first deployment, API
endpoints for external integration, and dashboard localization,
ensuring GridGenius can be adopted not only by national grid
operators, but also by regional power distribution authorities,
academic researchers, and policy planners across the Global
South.

ACKNOWLEDGMENT

The authors would like to thank the Department of
Electrical and Computer Engineering at North South
University for providing the technical guidance to carry out
this research. Special thanks to Intisar Tahmid Naheen for his
insights and supervision throughout the project.

REFERENCES

[1] Bangladesh Power Development Board, “Bangladesh Power

Development Board,” [Online]. Available: https://www.bpdb.gov.bd/.

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.

Gomez, Ł. Kaiser, and I. Polosukhin, “Attention Is All You Need,”
arXiv preprint arXiv:1706.03762, 2017. [Online]. Available:

https://arxiv.org/abs/1706.03762.

[3] G. P. Reddy and Y. V. P. Kumar, "Explainable AI (XAI):
Explained," 2023 IEEE Open Conference of Electrical, Electronic and

Information Sciences (eStream), Vilnius, Lithuania, 2023, pp. 1-6, doi:

10.1109/eStream59056.2023.10134984.

[4] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H.

Küttler, M. Lewis, W. Yih, T. Rocktäschel, S. Riedel, and D. Kiela,
“Retrieval-Augmented Generation for Knowledge-Intensive NLP

Tasks,” arXiv preprint arXiv:2005.11401, 2020. [Online]. Available:

https://arxiv.org/abs/2005.11401.

[5] M. Hossain, S. Rahman, and T. Ahmed, "Short-Term Electricity

Demand Forecasting of Dhaka City Using Machine Learning

Approaches," arXiv preprint arXiv:2406.06651, 2024.

[6] Y. Wang, Y. Hao, B. Zhang, and N. Zhang, “Short-term power load

forecasting using SSA-CNN-LSTM method,” Systems Science &
Control Engineering: An Open Access Journal, vol. 12, no. 1, pp. 1–

12, 2024. [Online]. Available:

https://doi.org/10.1080/21642583.2024.2343297

[7] H. Haque and M. A. Razzak, “Medium-Term Energy Demand Analysis
Using Machine Learning: A Case Study on a Residential Apartment,”

SSRN Electronic Journal, Aug. 2022. [Online]. Available:

https://doi.org/10.2139/ssrn.4197655

[8] H. Haque, M. Islam, M. A. I. Alvy, M. S. Islam, and M. A. Razzak,

“Long-term Energy Demand Analysis using Machine Learning
Algorithms: A Case Study in Bangladesh,” in Proc. 2024 6th Int. Conf.

on Smart Grid and Renewable Energy (SGRE), Cox's Bazar,
Bangladesh, Jan. 2024, pp. 1–6. [Online]. Available:

https://ieeexplore.ieee.org/document/10815643.

[9] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, and L. Sun,
"Transformers in Time Series: A Survey," arXiv preprint

arXiv:2202.07125, 2022. [Online]. Available:

https://arxiv.org/abs/2202.07125

[10] H. Wu, J. Xu, J. Wang, and M. Long, "Autoformer: Decomposition

Transformers with Auto-Correlation for Long-Term Series
Forecasting," arXiv preprint arXiv:2106.13008, 2021. [Online].

Available: https://arxiv.org/abs/2106.13008

[11] IBM, "Using the watsonx.ai Time Series Forecasting API to predict
energy demand," IBM Developer, 2025. [Online]. Available:

https://www.ibm.com/think/tutorials/time-series-api-watsonx-ai

[12] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv preprint arXiv:1412.6980, 2014. [Online].

Available: https://arxiv.org/abs/1412.6980.

[13] Chroma, “Chroma: The AI-native open-source embedding database,”

GitHub Repository, 2023. [Online]. Available:

https://github.com/chroma-core/chroma.

[14] Meta AI, “Introducing Llama 3.1: Our most capable models to date,”

Meta AI Blog, 2024. [Online]. Available:

https://ai.meta.com/blog/meta-llama-3-1/.

[15] Groq, “GroqCloud: Fast AI Inference,” 2024. [Online]. Available:

https://groq.com/groqcloud/

[16] S. Ramírez, “FastAPI,” 2023. [Online]. Available:

https://fastapi.tiangolo.com/.

[17] Vercel, “Vercel Documentation,” 2024. [Online]. Available:

https://vercel.com/docs.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.

Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E.
Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of

Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[19] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,

J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M.
Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V.

Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-

scale machine learning on heterogeneous systems,” arXiv preprint
arXiv:1603.04467, 2016. [Online]. Available:

https://arxiv.org/abs/1603.04467.

[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E.

Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-

Performance Deep Learning Library,” in Advances in Neural

Information Processing Systems 32, 2019.

[21] F. Chollet, “Keras,” GitHub Repository, 2015. [Online]. Available:

https://github.com/keras-team/keras.

[22] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P.
Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R.

Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
J. F. Del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,

T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, pp. 357–362,

2020.

[23] W. McKinney, “Data Structures for Statistical Computing in Python,”
in Proceedings of the 9th Python in Science Conference, 2010, pp. 51–

56.

[24] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing

in Science & Engineering, vol. 9, no. 3, pp. 90–95, 2007.

https://www.bpdb.gov.bd/
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2005.11401
https://doi.org/10.1080/21642583.2024.2343297
https://doi.org/10.2139/ssrn.4197655
https://ieeexplore.ieee.org/document/10815643
https://arxiv.org/abs/2202.07125
https://arxiv.org/abs/2106.13008
https://www.ibm.com/think/tutorials/time-series-api-watsonx-ai
https://arxiv.org/abs/1412.6980
https://github.com/chroma-core/chroma
https://ai.meta.com/blog/meta-llama-3-1/
https://groq.com/groqcloud/
https://fastapi.tiangolo.com/
https://vercel.com/docs
https://arxiv.org/abs/1603.04467
https://github.com/keras-team/keras

[25] M. Waskom, “Seaborn: Statistical Data Visualization,” Journal of

Open Source Software, vol. 6, no. 60, p. 3021, 2021.

[26] Google, “Google Cloud AI Platform,” 2024. [Online]. Available:

https://cloud.google.com/ai-platform.

[27] Hugging Face, “Hugging Face Transformers,” 2024. [Online].

Available: https://huggingface.co/transformers/.

[28] Railway, “Railway: Infrastructure for Developers,” 2024. [Online].

Available: https://railway.app/.

[29] E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, L. Wang, and W. Chen,

“LoRA: Low-Rank Adaptation of Large Language Models,” arXiv
preprint arXiv:2106.09685, Jun. 2021. [Online]. Available:

https://arxiv.org/abs/2106.09685.

[30] S. Bai, J. Z. Kolter, and V. Koltun, “An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence

Modeling,” arXiv preprint arXiv:1608.08242, Aug. 2016. [Online].

Available: https://arxiv.org/abs/1608.08242.

[31] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,

“Informer: Beyond Efficient Transformer for Long Sequence Time-
Series Forecasting,” arXiv preprint arXiv:2012.07436, Dec. 2020.

[Online]. Available: https://arxiv.org/abs/2012.07436.

[32] H. Wu, “Revisiting Attention for Multivariate Time Series

Forecasting,” arXiv preprint arXiv:2407.13806, Jul. 2024. [Online].

Available: https://arxiv.org/abs/2407.13806.

https://cloud.google.com/ai-platform
https://huggingface.co/transformers/
https://railway.app/
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1608.08242
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2407.13806

	I. Introduction
	II. Related Work
	A. Energy Demand Forecasting and Dataset Challenges
	B. Transformer Models for Time Series Forecasting
	C. Methodologies Combining Explainable AI and Forecasting
	D. Summary of Research Gaps

	III. Methodology
	A. Dataset Collection and Description
	B. Exploratory Data Analysis (EDA)
	C. Feature Engineering and Data Iterations
	D. Modeling Pipeline
	a) Random Forest Regressor: 80/20 train-test split, with random_state as 42. RandomizedSearchCV used to tune n_estimators, max_depth, min_samples_split, min_samples_leaf. This model achieved the highest R² score (≈ 89.9%) among tree-based models.
	b) XGBoost Regressor: Boosting algorithm correcting residuals iteratively. Tuned n_estimators, learning_rate, max_depth, subsample, colsample_bytree, gamma. Fast histogram-based optimization.
	c) Support Vector Regression (SVR): Required feature standardization. Kernels (linear, polynomial) were explored. Less effective than ensemble methods for this dataset.

	E. Primary Model: Transformer Regressor
	F. Explainability through RAG-based LLM Integration
	G. Deployment Overview

	IV. Results and Experiments
	A. Experimental Setup
	B. Evaluation Metrics
	C. Overall Model Performance
	D. Hyperparameter Tuning
	E. Transformer Model Results
	F. Ablation Study: Impact of Scaling Techniques

	V. Conclusion and Future Work
	Acknowledgment
	References

