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Abstract—Bangladesh continues to face critical challenges in 

balancing electricity generation with national demand, resulting 

in resource wastage, elevated operational costs, and frequent 

load shedding. Existing forecasting methods often lack the 

precision, scalability, and interpretability required for dynamic, 

real-world grid optimization. In this work, we present 

GridGenius, a fully deployed, novel AI-powered platform 

designed to forecast daily electricity demand with high accuracy 

and explainability. The system utilizes a hybrid modeling 

architecture that integrates classical machine learning models 

(Random Forest, XGBoost) with a custom Transformer-based 

deep learning regressor, achieving R² scores of up to 0.89. A 

novel dataset was constructed by scraping and processing over 

1,800 daily reports from the Bangladesh Power Development 

Board (BPDB) covering the period from 2020 to 2024. The 

dataset is enriched with engineered features such as holidays, 

temperature trends, seasonal effects, and demand-generation 

gaps. Multiple preprocessed dataset variants were created to 

assess model robustness. To address the widespread issue of 

limited model transparency, GridGenius integrates a Retrieval-

Augmented Generation (RAG) pipeline powered by a Large 

Language Model (LLM), allowing users to query about forecasts 

in natural language and receive real-time, interpretable insights. 

The platform is deployed as a live web application with forecast 

panels, visual dashboards, and chatbot interaction, making 

advanced energy forecasting accessible to grid planners and 

policymakers. Our results demonstrate that combining hybrid 

AI techniques with explainable interfaces significantly enhances 

both predictive performance and user trust. GridGenius offers 

a scalable, transparent, and novel solution for smarter grid 

management in Bangladesh and similarly developing energy 

systems. 

Keywords—Energy demand forecasting, Transformer models, 

Explainable AI, Machine learning, Retrieval-Augmented 

Generation (RAG), Grid optimization 

I. INTRODUCTION  

Bangladesh has long struggled with challenges in 
balancing electricity generation and national demand, 
resulting in frequent load shedding, energy wastage, and 
significant economic loss. Studies indicate that inefficient 
load management and inaccurate demand forecasting 
contribute substantially to these issues, leading to an energy 

shortfall that affects both residential and industrial sectors. 
Despite improvements in power generation capacity, the 
Bangladesh Power Development Board (BPDB) [1] continues 
to experience demand-supply mismatches, particularly during 
peak periods and seasonal transitions. The problem is 
exacerbated by the lack of real-time, explainable forecasting 
systems [3] that planners can use for dynamic grid 
optimization. 

Conventional energy demand forecasting methods, such as 
time-series models and basic machine learning (ML) 
techniques, have been deployed with moderate success. 
However, they often fail to generalize across different 
temporal scales, ignore feature interactions such as holidays 
and weather effects, and lack scalability for daily operational 
use. This situation motivates the need for an intelligent, 
flexible system capable of daily forecasting, system-wide 
interpretability, and real-world deployment readiness. 

To address this need, we propose leveraging advances in 
artificial intelligence (AI), particularly hybrid modeling 
techniques that combine classical ML models with 
Transformer-based [2] deep learning architectures. 
Furthermore, integrating explainable AI [3] methods, such as 
Retrieval-Augmented Generation (RAG) [4] pipelines 
powered by Large Language Models (LLMs), can provide not 
only accurate forecasts but also transparent justifications for 
model predictions, making the system more trustworthy for 
grid planners and policymakers. 

Several recent studies have explored energy demand 
forecasting using AI approaches. For instance, the work by 
Hossain [5], applied XGBoost models on partial BPDB [1] 
datasets, achieving short-term accuracy improvements but 
lacking explainability [3]. Wang [6], combined CNN and 
LSTM networks for short-term residential load prediction but 
did not incorporate feature engineering such as holiday or 
seasonal effects. Haque [7], used LightGBM models for 
medium-term forecasting at a subdistrict level, focusing 
mainly on apartment complexes with limited data diversity. 
Haque [8], also investigated long-term forecasting using KNN 
models, achieving high R² scores but overfitting to specific 
city-level data without daily granularity. Additionally, a 
survey on Transformer models [2] for time series forecasting 



[9] highlighted the potential of self-attention mechanisms but 
noted the scarcity of real-world applications tailored to energy 
systems. 

Despite their contributions, significant research gaps 
remain: 

 Lack of comprehensive, real-world daily datasets 
spanning multiple years. 

 Limited feature engineering capturing factors like 
holidays, seasons, and demand-generation gaps. 

 Absence of hybrid model architectures combining 
ML and Transformer-based [2] deep learning. 

 No integration of explainable AI [3] methods (e.g., 
RAG pipelines) [4] into operational forecasting 
systems. 

 Lack of real-world deployment with live user 
interaction capabilities. 

 To bridge these gaps, we present GridGenius, a novel, 
fully deployed, AI-powered energy demand forecasting 
platform. GridGenius combines traditional ML models 
(Random Forest, XGBoost) with a customized Transformer-
based [2] regressor, trained on a novel daily dataset collected 
from 1800+ BPDB [1] reports. The platform integrates a 
RAG-based [4] explainable AI [3] chatbot, enabling real-time, 
natural language interaction with forecasts. Through this 
system, we aim to contribute a scalable, explainable, and 
operationally practical solution for grid management in 
Bangladesh and similar emerging economies. 

II. RELATED WORK 

A. Energy Demand Forecasting and Dataset Challenges 

Energy demand forecasting has traditionally relied on 
statistical methods such as ARIMA and multiple linear 
regression, offering reasonable short-term accuracy but 
struggling to generalize across seasons and large temporal 
variations. Recent studies have turned toward machine 
learning (ML) techniques, utilizing historical consumption 
data to model complex nonlinear patterns. Hossain [5] applied 
XGBoost to partial BPDB [1] data but lacked broader feature 
engineering, limiting model robustness. Haque [7] used 
LightGBM models on apartment-level data for medium-term 
forecasting; however, the dataset was small and 
geographically narrow. Wang [6] explored CNN-LSTM 
hybrids for short-term load prediction, focusing primarily on 
deep model structures without external factor integration such 
as holidays or seasonal shifts. Haque [8] utilized KNN for 
long-term forecasting but with reduced temporal granularity. 
These approaches demonstrate the shift toward data-driven 
modeling but also expose limitations in dataset diversity and 
feature richness. 

B. Transformer Models for Time Series Forecasting 

The adoption of Transformer-based architectures [2] for 

time-series forecasting has recently gained momentum. The 

survey by Wen [9] highlights the effectiveness of attention 
mechanisms in modeling long-term dependencies, 

outperforming RNN-based methods on multiple 

benchmarks. Further, studies like Wu [10] proposed 

Autoformer, introducing decomposition blocks specifically 

tuned for periodicity and trend extraction in time-series data. 

Although Transformers [2] offer promising gains, their 

application to real-world energy systems remains limited. 

Most Transformer-based [2] studies focus on benchmark 

datasets (e.g., ETT, Weather, Traffic) rather than operational 

electricity demand. 

C. Methodologies Combining Explainable AI and 
Forecasting  

Explainability in energy forecasting has traditionally 
relied on post hoc metric evaluation (e.g., R², RMSE) without 
offering insights into feature importance or model reasoning. 
Recent advances integrate Large Language Models (LLMs) 
and Retrieval-Augmented Generation (RAG) [4] pipelines to 
enable more transparent, interactive systems. IBM's 
watsonx.ai [11], for instance, combines pretrained models 
with agent-driven retrieval systems to deliver natural-
language insights on forecast outputs. Despite these 
developments, explainable AI techniques have yet to be 
widely adopted in operational energy forecasting platforms. 

D. Summary of Research Gaps 

From the above review, we identify the following major 
research gaps: 

 Lack of large, real-world, daily-scale datasets 
spanning multiple years. 

 Limited feature engineering incorporating external 
factors like holidays, temperature, and seasonality. 

 Minimal use of hybrid ML and Transformer-based 
[2] models specifically tuned for operational 
electricity demand forecasting. 

 Absence of integrated explainable AI [3] interfaces 
(e.g., RAG [4] pipelines) within forecasting 
platforms. 

 Limited deployment of full-stack, user-interactive 
systems capable of real-time forecast querying. 

To address these gaps, our work presents GridGenius, a 
fully deployed forecasting platform combining a custom 
dataset, hybrid modeling, and explainable AI [3] integration 
for smarter, scalable energy management. 

TABLE I.  SUMMARY OF RELATED WORK 

Paper 
Details 

Approach Used Dataset Limitations 

Hossain 

[5] 

XGBoost on 

BPDB [1] 

partial data 

Limited features; 

short-term data 

No feature 

engineering; no 

explainability 

Haque 

[7] 

LightGBM on 

apartment data 

4 years, small 

regional dataset 

Not generalized; 

lacks external 

factors 

Wang [6] 
CNN-LSTM 

hybrid 

Focused on deep 

model structure 

No feature 

engineering; 

ignored 

seasonality 

Haque 

[8] 

KNN for long-

term planning 

3 years, city-

specific data 

Lack of daily 

granularity; 

overfitting 

Wen [9] 
Transformer [2] 

models survey 

Benchmark time 

series datasets 

No application 

to real-world 

energy systems 

Wu [10] 
Autoformer for 

time-series 

Synthetic datasets 

only 

No real energy 

load forecasting 

experiments 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Example Overall system architecture of GridGenius showing dataset creation, model training, forecasting, and explainable AI integration. 

III. METHODOLOGY 

The proposed GridGenius system follows a modular, 
multi-stage workflow encompassing data collection, 
preprocessing, model training, explainability, and 
deployment. In the first stage, raw daily electricity reports and 
external weather data are collected and merged. Subsequent 
preprocessing steps involve missing value handling, outlier 
detection, and extensive feature engineering to construct 
multiple dataset variants. Machine learning and Transformer-
based [2] deep learning models are then trained and evaluated 
to predict daily electricity demand. Finally, a Retrieval-
Augmented Generation (RAG) [4] chatbot is integrated into 
the platform to deliver real-time explainable insights to users. 
A visual overview of the complete system architecture is 
provided (Fig. 1). 

A. Dataset Collection and Description 

We constructed a novel dataset by programmatically 
scraping over 1800 daily electricity reports published by the 
Bangladesh Power Development Board (BPDB) [1] between 
2020 and 2024. Each report contains: 

 Maximum Demand (MW) 

 Maximum Generation (MW) 

 Associated Metadata (date, time) 

To enrich the feature space, additional external data 
sources were integrated: 

 Daily average temperature (in °C) based on weather 
reports. 

 Holiday flag (binary indicator if a day was a national 
holiday). 

This dataset provided a foundation for understanding the 
underlying drivers of energy demand fluctuations in 
Bangladesh, along with an understanding of how these 
features are interrelated. 

B. Exploratory Data Analysis (EDA) 

Extensive EDA was conducted to understand trends, 
distributions, and feature relationships across the entire 
dataset. 

Key insights included: 

 Temperature Distribution skewed towards high 
temperatures (Fig. 2). 

 Energy Demand shows broad Distribution, whereas 
Generation Distribution skews to the right (Fig. 3, 
Fig. 4). 

 Correlation among specific features (Fig. 5). 

 Demand increases during hotter months (Fig. 6). 

 Holidays correlate with reduced demand (Fig. 7). 

 Frequent demand-generation gaps were observed, 
especially in colder months (Fig. 8, 9). 

 

Fig. 2. Temperature shows a right-skewed distribution, peaking at 30°C. 

 

 

Fig. 3. Energy Demand shows a broad distribution. 

 



 

Fig. 4. Energy Generation skews to the right, peaking at 15000 MW. 

 

Fig. 5. Correlation Matrix (Heatmap) of Dataset Features. 

 

Fig. 6. Energy Demand increases during higher temperature seasons. 

 

Fig. 7. Holidays show lesser Energy Demand compared to Non-Holidays. 

 

Fig. 8. Time Series Analysis of the Energy Demand-Generation Gap. 

 

Fig. 9. Monthly Average Energy Demand-Generation Gap (2020-2024). 

C. Feature Engineering and Data Iterations 

Several preprocessing and feature engineering techniques 
were applied: 

 Outlier removal using IQR and Z-score methods. 

 Scaling with StandardScaler and MinMaxScaler. 

 New features, including Demand-Generation Gap 
(MW), Season Classification (“High Temp” or “Low 
Temp”), and a Holiday binary flag. 

 We created four different dataset variants, each differing 
by outlier handling and scaling strategies, to allow for robust 
model experimentation. 

D. Modeling Pipeline 

Multiple machine learning models were explored: 

 Linear Regression (baseline model) 

 Random Forest Regressor (best classical model) 

 XGBoost Regressor (second-best) 

 Support Vector Regressor (SVR) (sensitive to 
feature scaling) 

 Transformer Regressor (custom deep learning 
model) 

Key details about selected 3 models, other than our 
primary model of focus: 

a) Random Forest Regressor: 80/20 train-test split, 

with random_state as 42. RandomizedSearchCV used to tune 

n_estimators, max_depth, min_samples_split, 

min_samples_leaf. This model achieved the highest R² score 

(≈ 89.9%) among tree-based models. 



b) XGBoost Regressor: Boosting algorithm correcting 

residuals iteratively. Tuned n_estimators, learning_rate, 

max_depth, subsample, colsample_bytree, gamma. Fast 

histogram-based optimization. 

c) Support Vector Regression (SVR): Required feature 

standardization. Kernels (linear, polynomial) were explored. 

Less effective than ensemble methods for this dataset. 

E. Primary Model: Transformer Regressor 

The Transformer-based [2] Regressor was developed as 
the primary model to capture complex feature interactions: 

 Input Layer: Linear mapping to model dimensions 

 Transformer Encoder Layers: Multi-head self-
attention layers, Feed-forward sublayers, Dropout 
regularization 

 Output Layer: Single neuron predicting demand 

TABLE II.  TRANSFORMER REGRESSOR IMPLEMENTATION DETAILS 

Setting Value 

Optimizer Adam [12] 

Loss Function Mean Squared Error (MSE) 

Training Epochs 50 

Hyperparameters Tuned 
num_heads, model_dim, num_layers, 

dropout, learning_rate 

 

The loss reduction was achieved via iterative 

backpropagation, weight updates, and learning rate 

adjustments through the Adam optimizer [12]. Dropout was 

applied to prevent overfitting. 

F. Explainability through RAG-based LLM Integration 

To enhance system transparency, explainable AI [3] was 
incorporated using a Retrieval-Augmented Generation (RAG) 
[4] pipeline: 

 ChromaDB vector store [13] holds the Project 
Documentation, Model Statistics, and Dataset 
Summaries. 

 For the LLM, Llama 3.1 (8 billion parameters) [14] 
is used (running inference via Groq Cloud [15]), and 
on user queries, relevant context is retrieved and 
passed to the LLM via a custom RAG [4] pipeline. 

 This enables the system to explain forecasts, behaviors, 
and feature impacts without requiring technical expertise from 
the user.  

G. Deployment Overview 

The GridGenius platform is deployed using a modular and 
scalable architecture to ensure high performance, low latency, 
and ease of future extensibility. The backend is developed 
using FastAPI [16], a modern, asynchronous Python web 
framework known for its speed and automatic OpenAPI 
documentation generation. The backend serves two primary 
purposes: exposing RESTful API endpoints for model 
inference and RAG-based [4] explainability queries, and 
handling data retrieval from the vector database. 

The frontend is built using a responsive web framework 
and hosted on Vercel [17], a cloud platform optimized for 

static assets and dynamic serverless functions. The frontend 
provides an interactive dashboard that allows users to input 
query parameters (e.g., temperature, holiday status, zone), 
view daily energy demand forecasts, and receive real-time 
explanations through an integrated chatbot interface. 

A persistent local server hosts the ChromaDB vector 
database [13], which stores embedded project documents, 
model statistics, and dataset insights. This architecture enables 
fast retrieval of relevant context when serving explainable AI 
[3] outputs. 

The user interface is structured into three primary sections: 

 Forecast Panel: Displays the predicted energy 
demand values based on user inputs (Fig. 10). 

 Visualization Dashboard: Presents historical trends, 
model performance metrics, and feature impact 
graphs (Fig. 11). 

 Chatbot Assistant: Enables natural language 
interaction with the system via a Retrieval-
Augmented Generation (RAG) [4] pipeline, powered 
by the LLM (Fig. 12). 

 Additional embellishment was added with a user-centric 
interface, a visually refined landing page, an additional 
“About” section displaying information of the team and 
experiment, and further details to make the tool approachable 
to anyone at all; even people outside the realm of Machine 
Learning, AI, or Energy Efficiency Systems. This further 
propels our platform in its goal of presenting an approachable 
and transparent system for everyone. An interactive version of 
this paper is also available on the platform. 

 

Fig. 10. The prediction tool, “GridOracle”, predicting Energy Demand. 

 

Fig. 11. The Visualization Dashboard for Data Analytics 



 

Fig. 12. The chatbot “GridGenius”, engaging in an insightful conversation. 

Overall, the deployment strategy ensures a low-latency 
experience for end-users while maintaining modularity, 
allowing independent updates to the backend, frontend, and 
vector database components without system downtime. 

IV. RESULTS AND EXPERIMENTS 

A. Experimental Setup 

All model training and experimentation were conducted 
using a hybrid setup consisting of Google Colab (NVIDIA T4 
GPU), a personal computer equipped with an NVIDIA RTX 
3060 GPU (6 GB VRAM, 16 GB RAM, Intel i7 processor) 
and a MacBook Air (M1, 16GB). The project utilized 
frameworks and libraries such as Scikit-learn [18], 
TensorFlow [19], PyTorch [20], Keras [21], NumPy [22], 
Pandas [23], Matplotlib [24], Seaborn [25], FastAPI [16], and 
Chroma [13]. 

DB for model training, deployment, and visualization. The 
frontend was hosted on Vercel [17], and retrieval-augmented 
explainability features were implemented using Groq Cloud 
[15] with embeddings generated via Google API Model 004 
[26] and Huggingface MiniLM-L6-v2 [27], with the backend 
being hosted on Railway [28]. 

B. Evaluation Metrics 

Model performance was evaluated based on the following 
metrics: 

 Coefficient of Determination (R²): Measures model 
explanatory power. 

 Mean Absolute Error (MAE): Indicates average 
prediction error magnitude. 

 Mean Squared Error (MSE): Penalizes larger errors 
quadratically. 

 Root Mean Squared Error (RMSE): Represents error 
in original unit scale (MW). 

These metrics provided a multi-perspective evaluation of 
forecasting accuracy and stability. 

C. Overall Model Performance 

Extensive experimentation was conducted using five 
different models across four dataset iterations: 

 Linear Regression 

 Random Forest Regressor 

 Support Vector Regressor (SVR) 

 Gradient Boosting Regressor 

 XGBoost Regressor 

 Transformer [2] Regressor (custom deep learning 
model) 

The best performing models were Random Forest (Fig. 
13) and XGBoost (Fig. 14), achieving R² scores close to 0.90, 
while the Transformer [2] achieved an R² of approximately 
0.82 (Fig. 15). 

TABLE III.  EVALUATION ACROSS DATASET VARIANTS 

Dataset 

Details 

Best 

Model 
R² MAE RMSE 

GGDataset_a 

(MinMaxScaler + 

IQR) 

Random 

Forest 
0.89845 0.04623 0.06487 

GGDataset_b 

(MinMaxScaler + 

Z-Score) 

Random 

Forest 
0.89198 0.04758 0.06691 

GGDataset_c 

(StandardScaler + 

IQR) 

Random 

Forest 
0.89776 0.22607 0.31274 

GGDataset_d 

(StandardScaler + 

Z-Score) 

Random 

Forest 
0.89449 0.22679 0.31770 

 

 

Fig. 13. Random Forest predictions vs actual Energy Demand. 

 

Fig. 14. XGBoost predictions vs actual Energy Demand. 

D. Hyperparameter Tuning 

Hyperparameter optimization was performed for the 
Random Forest and XGBoost models, using 
RandomizedSearchCV. 

 Random Forest Tuned Parameters include 
n_estimators, max_depth, min_samples_split, 
min_samples_leaf. 



 XGBoost Tuned Parameters include n_estimators, 
learning_rate, max_depth, subsample, 
colsample_bytree, gamma. 

 Fine-tuning substantially boosted performance, 
particularly reducing error variance. 

E. Transformer Model Results 

The custom-built Transformer-based [2] Regressor was 
trained on feature-engineered datasets to capture sequential 
and temporal patterns. 

Key Training Details: 

 Optimizer: Adam [2] 

 Loss Function: Mean Square Error (MSE) 

 Training Epochs: 50 (Fig. 16) 

 Attention Mechanism: Multi-Head Self-Attention 

 Positional Encoding: Injected to preserve temporal 
ordering 

 Performance: 

 R² ≈ 0.82 

 MAE ≈ 0.06 

 RMSE ≈ 0.08 

The Transformer [2] model, despite limited sample size 
compared to deep learning standards, demonstrated excellent 
generalization. 

 

Fig. 15. Transformer Model predictions vs actual Energy Demand. 

 

Fig. 16. Training Loss per epoch for the Transformer Model 

F. Ablation Study: Impact of Scaling Techniques 

To evaluate the effect of feature scaling strategies, models 
were trained and tested on datasets processed via 
MinMaxScaler, and StandardScaler (each with outliers 
removed using 0-1 or Z-Score Normalization to introduce 
further variation and robust testing). 

 Observations: 

 MinMaxScaler performed marginally better overall. 

 Transformer [2] models were less sensitive to scaling 
compared to SVR or Random Forest. 

 Z-Score Normalization had minimal effect on outlier 
removal. 

G. Explainable AI (LLM Chatbot) Results 

The explainability module utilizing RAG [4] with Groq 
Cloud [15] effectively answered complex user queries such as 
“What effects demand spike in Summer?”, or “How do 
holidays impact generation gaps?” 

Real-time explanations were generated with response 
times consistently below 1 second, improving transparency. 

V. CONCLUSION AND FUTURE WORK 

This paper presented GridGenius, an AI-powered 
forecasting platform designed to improve daily electricity 
demand prediction and planning in Bangladesh. Addressing 
limitations in prior research, GridGenius constructs a novel, 
multi-year dataset by programmatically scraping over 1800 
daily BPDB reports [1], augmented with external signals 
including temperature and national holiday indicators. 
Through extensive exploratory data analysis and feature 
engineering, the system leverages both classical machine 
learning models (e.g., Random Forest, XGBoost) and a 
custom-built Transformer model [2] to capture temporal and 
nonlinear patterns across diverse timeframes. 

Among the trained models, the Random Forest Regressor 
achieved the highest accuracy (R² ≈ 0.89), while the 
Transformer model [2] demonstrated strong generalization 
capabilities despite comparatively lower data volume. To 
enhance usability and transparency, GridGenius integrates a 
Retrieval-Augmented Generation (RAG) [4] pipeline 
powered by a Groq-hosted [15] Llama 3.1 LLM [14], enabling 
real-time, natural language explanations of predictions. The 
entire system is deployed through a scalable web stack 
(FastAPI [16], ChromaDB [13], Vercel [17]), offering end 
users an intuitive, fully interactive forecasting dashboard 
accessible via any modern browser. 

By combining data engineering, hybrid modeling, 
explainable AI [3], and system deployment, GridGenius 
addresses major gaps in scalability, interpretability, and real-
world usability, offering a novel blueprint for intelligent 
energy planning in emerging economies. 

Several promising directions remain for extending this 
work. First, we aim to collaborate directly with the 
Bangladesh Power Development Board (BPDB) [1] to gain 
access to even older historical reports, potentially expanding 
the dataset back to 2015 for improved long-term modeling. 
Enhancements to the Transformer [2] architecture are also 
planned, including hyperparameter tuning via advanced 
search strategies and experimentation with temporal 
convolutional or attention-variant modules. Additionally, the 
LLM chatbot can be further improved through domain-
specific prompt tuning, retrieval enhancement, or lightweight 
fine-tuning via LoRA [29], enabling richer technical dialogues 
and planning support. Finally, integrating additional external 
signals such as industrial activity indices, fuel prices, or 
regional outage data could further improve forecasting 
accuracy and policymaker relevance. 



Future iterations of GridGenius offer several avenues for 
enhancement and expansion. One immediate goal is to 
collaborate with the Bangladesh Power Development Board 
(BPDB) [1] to access historical records prior to 2020, thereby 
expanding the dataset's temporal coverage and enabling long-
term forecasting and trend decomposition. 

On the modeling side, we plan to optimize the Transformer 
architecture [2] through advanced hyperparameter tuning 
(e.g., Bayesian optimization) and explore alternate designs 
such as Temporal Convolutional Networks (TCNs) [30], 
Informer [31], or Autoformer blocks [10], particularly suited 
for long-horizon sequence forecasting. Incorporating 
multivariate attention mechanisms [32] may further improve 
the model’s ability to capture feature interactions over time. 

To improve user interpretability and decision support, we 
aim to enhance the LLM module by integrating domain-
specific prompt templates, contextual retrieval filters, and 
potentially lightweight LoRA [29] fine-tuning, allowing the 
chatbot to provide more specialized insights for utility 
planners and government stakeholders. 

Furthermore, the forecasting pipeline can be expanded to 
include additional external features, such as: 

 Industrial activity indicators 

 Fuel pricing trends 

 Urbanization and demographic data 

 Grid maintenance schedules and regional outage 
history 

Finally, we plan to explore mobile-first deployment, API 
endpoints for external integration, and dashboard localization, 
ensuring GridGenius can be adopted not only by national grid 
operators, but also by regional power distribution authorities, 
academic researchers, and policy planners across the Global 
South. 
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